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We examine a class of linear differential games in which the first player can
exert impulse controls while the second player has at his disposal controls
with geometric constraints, We formulate a game problem and we prove a
theorem which answers the problem posed in the class of games being consid=-
ered, We present examples, The paper's contents abut those in [1-5],

1, Let the equations of motion have the following form:
dz = Bzdt+vdt - NdD, z=R", v=eVCR" 1.1)

Here R™ is an n-dimensional Euclidean space, B is a constant square matrix of dimen-
sion 7, NV is a constant matrix having n rows and r columns, ¥V is a convex compac-
tum,

Let £ >0 and C [0, #] be a Banach space of continuous r-dimensional vector-
valued functions x (), defined on [Q, z], with norm % ([0, ¢], x (7)) = MaXpg=<t X
il x(t) ||, where ||x (T)|| is the norm in an r-dimensional linear normed space R",
By W [0, t] we denote the space of r-dimensional vector-valued functions @ (t) of
bounded variationon [0, ¢] ;the norm in W [0, #], denoted by p (10, I, @ (7)), is ge-
nerated by the norm % ([0, #], x (7)) as in the space adjoint to C [0, ¢].

Let there be given z, & R", 0 >0, @ () & W0, o] and the vector-valued
function v (7) & V measurable on [(, 6], We assume that under the action of func-
tions @ (x), v (1) the phase point z of system (1,1) displaces from the initial position

to the point g 5
z(c) = e°Bz, + S el@="By (1) dv + S BN dD (v) (1.2)
0 1]

at instant ¢ , where the last integral is understood in the Riemann-Stieltjes sense, We
introduce the variable u, varying by the following rule:

(0) = po — p (10, 0], @ (7)) (1.3)
We write the constraints on the choice of function @ (1) in the form of inequalities
p(o) >0 (1.4)

By I we denote the set p >> ( and the direct product of R" and I by R* X 1.1In

the game problem to be examined below we use the following rule, The first player choos-
esa function @ (), the second playerthe function v (1) & V. Let [zy; poJ & R™ X 1
be the initial position of the game, According to his own judgement the second player se-
lects ¢, > 0 and the control Vv, (1) & V measurable on [0, ¢,] . He communicates
his own choice to the first player, Knowing the second player's choice, the first player
chooses the control @, (1) &= W [0, o] on |0, ) so as to fulfil (1,4), Under the
action of the controls chosen the point {z,; pol & R™ X 1 displaces to the point
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[z (01); n (o))l = R™ X 1 (see(1.2) and (1,3)). Next, the second player selects
¢, > 0 and the control v,(t) on [0, ¢,] and informs the first player, etc, These are
the so-called o-strategies,

Let 7 be the linear mapping of R™ into R, where R? isa g-dimensional linear
Euclidean space, For each ¢ > (0 we consider the set

t
A = {y eERYy= S:rce("‘)BN d® (t), p([0,t] D (7)) = 1} (1.5)
0
Using the weak compactness of a ball in W [0, #], we can show that for each ¢ > 0
the set A (¢) is a convex compactum in R? given by the system of inequalities (the

asterisk denotes transposition) ¥, V) < maxt H N*eBoey ” (1.6)
ST
Weset A4 (0) = ()i>04 (£). Leta closed set G be given in R?.

Definition 1, A game starting from a point [z; u] & R™ X I can be com-
pleted at an instant ¢ > O if for any g-strategy of the second player there exists a
o-strategy of the first player such that 7z (t:) & G -+ p (£)A44 (0).

The following problem can be formulated in relation with the definition given,

Problem 1, Given G (C R%and #; > 0 ; determine the set of those points [z;
pul & R™ X I from which the game can be completed at the instant £;.

2, We shall solve Problem 1 under the following assumptions:

1) e BV =y(@)+k(T)S, >0
2) | N*e Bt | =B(t) e (§), >0, v R?
3) m()=max3(t) >0, >0

ot

4) G=a-+eS, a=R" a=-const

Here S is some compactum in R?, convex and symmetric with respect to the origin,
containing the zero vector as an interior point, ¢ (1) is the support function of §

¢ (P) = maxes (s, V) for P = R?

k () and B (v) are continuous scalar functions, % (1) >0, B (z) >0 for 1 >0,
y (7) is a continuous g-dimensional vector-valued function,
From assumptions (1) and (2) and from (1. 5), (1. 6) we can get that

TatTs

{W ER: w= ne*By (1) dv, v (1) V} = (2.1)
T1{-Ts TlTH-‘Cl
ymde + § k@de.s
neBA(t,) = max B(r)-S (2.2)
TSIKT s

forany 7y >0, v, > 0.
By £, we denote the largest of the numbers £ > 0 for which
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¢
e—\k(®)dr>0
i}
If this inequality is fulfilled for all ¢ > 0, we set ¢, = ~}- co.
Lemma 1. Let 0 < ¢ < ¢,; in order that the game can be completed at the
instant t; from the point [z; ] & R™ X 1 ,it is necessary and sufficient that
iy 14
nehBz |- S y(mydt —ac(um @) +e—K)S, Ki= S E(vydv (2.3)
0 0
Proof, Using the definition of the operation # (see [1]), for example), we can

show that (pm () + & — K S = (um (t)) + ) SLK,S (2.4)

(wm () + & — Ky) S = pm (1) S + (252K,5) @5
Necessity, Suppose that (2,3) is not fulfilled ; then from (2,1) and (2, 4) follows
the existence of the control v, (t) & V measurable on [0, ¢;], such that
ty
nelt By S aeliB g (dr—aZ wm () +8) S {2.6)
o
Suppose the first player chose the control @, (1) € W [0, ;] satisfying (1.4), Then there
exists A & [0, 1] such that

M= p ([0, ], @y (D), p)=(01—Mnp

From this and from relations (1, 5) and (2, 2) follows the existence of a vector s, € S
such that i

S 7' IB NGO (1) = hum () 51

0

Then from (2,6) it follows that ,
1

nz (t) = nehBz - S neIB gy (nyde fApm @ty s Sat A ~A)pd 0) + 8
o
because for any A < [0, 1] and s € S we have

a—Aum () s+ (1 —Apdy (0) FeSCa-(um(ty) ¢S

Sufficiency, Suppose (2.3) holds; then from (2, 5) follows the existence of & €
S such that 4
et By -+ S nel By (yde L um ) s Eat &S 2.7
]
for all functions v (1) & V measurable on [0, #;] . The proof of the sufficiency follows
from (2, 7) if we make use of (1, 5) and (2, 2).
Let us now consider the case #; > 5.
Theorem 1, In order that the game from the point [z; pl & R™ X I canbe
completed at an instant f; > f,, it is necessary and sufficient that
1Y 1y
t

netle+Sy(r)d1:—a—!—m(tl)S’:—(&))—dt-SCpm(tl)S (2. 8)

0
Proof, Necessity, Foreachinteger j >> 1 we define
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i tstio
b)) =3[ \ k@dr)[m+i9], o=L28
=1 i 1)e
As is easy to see f k
. . (v
]:lmb (]) = S m (%) dv
J—ree ts

Suppose that (2, 8) is not fulfilled ; then a number j, exists such that
5%

netbz + \ y(v)dv —a +m(t)b(i) S = wm(t) S 2.9
We set ° tation !
M = ( S Ic(‘r)dr) lm(t2+icl), 6y = _’I_;Tlﬁ_
tz4-(1—1)61

Then we can write b (j;) = 1y + My + ... + ",
From (2, 9) and the convexity of compactum S follows the existence of a nonzero
vector P, & R? and a number v > O such that

1y
(mes 4 §y (s —a, %)+ mE)bG) e (b) >HmE)e (b) +v @10

Let the vector S; & S be such that ¢ (P,) = (5,, P1). From (2.1) follows the exis-
tence of a function v, (t) measurable on [0, ¢,] ,such that

Oy ty t

elli=o)B S OBy, (7)dv = S ¥y (v)dt + S E(t)dt-s,  (2.11)

0 t—0y t—0,y
Let us show that if the second player takes o;and v, (v) & V on [0, o,], then for
any control ti—ay (2.12)

gellt—o1)Byg (51) -+ S Y (T) dv—a 4+ m (t1 - 51) (b (]1) - n:i:) Sz w (61) m (t1 - 61) S

By virtue of (1,4) and (2.2) we can assume that there exist s = § and A & [0, 1]

such that
pon=>1—np (2.13)

g1

qelti=onB S @B dD () = ML maXs,—ocectB (T) S (2.14)
0
Then, from (2,11) and (2, 14) follows

t;—oy 1y

meth-oB gz (5,) + S y (t)dt = melBz - S y(x)ydrt + (2.15)
0 0

t
S k(t)dt-s; + ML maxy,_o,<e<tB (V)5

ty-—oy
Let p << & (j1) — m;, s then (2,12) always holds since
po) =0 —Mp <b () —

We now examine the case when n > b (j;) — m;,. If A & [0, 1]is such that
u (01) << b (j;) — m;, then (2,12) holds, Let us consider A = [0, 1] such that
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u (o) > b (j1) — mj Le,
0< K — (53 — ;) (2.16)
from (2,15) and (2,10) it follows that

t1—oy

(et a (e, b+ § y(@dr—a, ) +
m ¢y~ 01) (b (j1) — M) ¢ (Py) —
wis)m(ty—o1)c (Pr) > p ) m(ty) ¢ (Py) —m E1) b{(j1) ¢ (b)) +
\ k(v)dre (hy) — Apmaxi_oceanB (Ve (b)) +
m(ty — 1) (b (J1) — M) ¢ (Y1) —
(I —=Mwn@E —oycp) +v=g(®)

We can show that the inequality g (A) > v is fulfilled for A < [0, 1] and satisfying
{2,16); this signifies that (2, 12) holds,
Repeating this argument j, times we find the second player's g-strategy such that
1]

nietBz (8 — £y) + S yydr—asp(t—t)m(t)S
0

is fulfilied at the instant #; — Z for any cestrategy of the first player; here o; = 0.
The application of Lemma 1 completes the proof of necessity,
Sufficiency, Suppose(2,8) holds; then
ty

ke (1)
M>§ E:) dr (2.17)

must necessarily be fuifilled, Since m (¢,) > m (v) for 0 < v < 4,

ol

i1 ty—a
. k(r) (t)
gg k(f)d"f%—m(ti) S m (% ) d'ﬁ' m(tl)&mdf (2,18)
for any o & [#,, #,] . From (2, 8),(2.17) and (2, 18) follows
t
neaBz_}.Sy(r)dr——a»{—gk(r)drx (2.19)

—’O

KSC(pm(tl)——m(tl) S ’“((?) dr)S

Suppose that the second player had selected 0 <C 0y < 4 — Z; and the control
vi{t) = V on [0, o,]; then there exists §; & § such that (2,11) holds,
Let us first consider the case m {#; — 0y) < m {#;). Then, according to (2,19),

there exists ¢, €= § such that . (2, 20)
ty i‘.; 10y I (1:') dt) . 9
nefx3z+gy(r)dr—»a+ S k(*\f)d”fﬁ—f-m(tl)(!l”‘ § m (%) LA
e 101 te
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where O & R? is the zero vector, For s, & § we can find a function @ (x) &
W [0, 641, p ([0, 04}, @ (7)) = 1 such that
ne(tl-ul)B S e(dl“T)BN d¢) (‘C) = maxt‘_clgrgtlg (T) *So=1m (tl) Sy (2. 21)
0
To the first player we assign the control

@y =1 - T adjow

tz

Then, by virtue of (2,20) and (2,21)
t1—o1
net—eBz (o) + | y(r)dt —a=8
0

In addition t—os

k
n(sy) = S m((?) dv
Consequently, " (2.22)
t1—ay ty—oy ¢
teltsoBz (5,) + S Y(¥)dv —a 4 m(t; — oy) ";((?) dv-SCu(e)m(ti—a) S

Now let m (¢, — 01) = m (¢,) ; then we assigh @, (1) = 0 to the first player,
Since strict equality obtains in (2,18) when m (£; — 1) = m (2,) . the left hand side
of inclusion (2, 22) equals
s f1 hoor
netiBz - Sy(t)dr —a-+ S k(t)ydv-s, -+ m(ty) S ;—({%dr-S
0 -0y iz
Thus we have shown that the first player can always maintain the inclusion (2, 22),
Consequently, the inclusion ts
ez (t, — 1) + | y(m)dv —acp (i — t)m () S
0
is fulfilled at the instant #; — f,, The proof is completed by an application of Lemmal,
We consider now the case &€ = 0,
Theorem 2, (1) Let ta
llms E ———dr <+ o0
m (%)
In order that the game from the point [z; pl & R™ X 1 can be completed at an inst~
ant £y, it is necessary and sufficient that
1y
netiBz - S y(v)dv —a+m(ty)

2) Let 0 4

. k(v)
lim dt = 4 o0
s—pd ™(T) +
Then it is impossible to complete the game at an instant ¢, > O from any point
[z;ul = R* X 1.

The proof of this theorem is analogous to that of Theorem 1,

k(1)
m (7)

Lt

3., We present several examples illustrating Theorems 1 and 2,
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Example 1, Let the equations of motion be of form (1,1), We assume V¥ to be
a convex compactum in R"™ , symmetric with respect to the origin, Let R?= R! and
let set G be the segment [, &). For ¢= 1 the matrix = is an » -dimensional row-
vector, We denote the segment [—1,1] by § ; then ¢ — a 4 &S, where a = (&, +
g) /2, e = (e, — &)/ 2. It is not difficult to verify that the assumptions (1), (2), (4),
stated in Sect, 2, are fulfilled, and

BO=|N"eP'nr], ym=0, k() =max(E? ¥, v)
vev

For the fulfillment of assumption (3) we require B (t) > 0 for 0 < 7 < 0, where 0 is
some number,

Example 2, Consider a game in which the equations of motion are

dzy = Z,dt + vdt, dzy = kyz,dt + kz,dt + dO
where z;, z, are r-dimensional vectors, k, and % are some numbers, It is easy to see

that N_ue
“\E

where £ and © are the r-dimensional unit and zero matrices, respectively, In R" we

define the set
S={weR:(w,¥)<[¥] for Y& R

We assume that v 85, where §>0. Weset ¢ — r and n = (Z,0) ; then nz € &$
signifies that z, & eS. Assumptions (1) — (4) are fulfilled in this example, and

B Vv_8la@]s, |NE arp]=]y @] IV
Here @ (1) and y (1) are the solutions of the following equations:

o =khat ke, a®=1, a (0)=0
Vo o=kt Ry, v0)=0, ¥ (0)=1
Example 3. Let the equations of motion have the form

dz, = Z,dt, dzy = —kZdt + Bz,dt 4 4D
dy, = Yodt, Ay, = —ka¥odt - Byy,dt + vdi

Here z,, 7,, ¥1, Y2 are r-dimensional vectors, k,, k, are some numbers, B, and B, are
constant ( r X r )-matrices satisfying the conditions

B‘i* = _B’iv Bi?‘ = —(l)izE, i = '1, 2

where ©; are certain nonnegative numbers, E is the r-dimensional unit matrix, We
assume that v & 0S5, where § is the r-dimensional closed Euclidean sphere of unit
radius, 8 > 0. We take the Euclidean norm as the norm in R"; then (see [6], forexam-~
ple) e
P01, @@ ={(3} d0pw)
0 ‘i=1
Weset ¢ =r and nn = (E, 0, —E, 0); then nz & &S signifies that z; — y, € &5, We
can verify that
neB V=28a ()8, [N*F bl =B ()]

where
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@ (®) = (f2 (O + &2 (" B@ =2 (@) + & ()"
f; (O = Se-k“" cos atdt, g (v)= S e_kit sin otdt, i= 1,2
1} 1}

REFERENCES

1, Pontriagin, L,S,, Onlinear differential games, 2, Dokl, Akad, Nauk SSSR,
Vol, 195, N4, 1967,

2, Krasovskii, N, N, and Tret'iakov, V,E,, On the pursuit problem under
constraints on the control impulses, Differentsial'nye Uravneniia, Vol,2, N5,
1956,

3, Krasovskii, N, N, , Games~-theoretical encounter of motions with bounded im-
pulses, PMM Vol, 32, N¢2, 1968,

4, Pozharitskii, G,K., Ona problem of the impulse contact of motions, PMM
Vol, 35, Ne5, 1971,

5. Pozharitskii, G,K,, Game problem of "soft" impulse contact of two material
points, PMM Vol, 36, N2, 1972,

6. Krasovskii, N, N,, Theory of Control of Motion, Moscow, "Nauka"”, 1968,

Translated by N, H, C,

UDC 62-50
CONTROLLABILITY OF A NONLINEAR SYSTEM IN A LINEAR APPROXIMATION

PMM Vol, 38, N4, 1974, pp,599-606
E,L,TONKOV
(Tambov)
(Received November 2, 1973)

We study the conditions for the controllability of a dynamic system whose
behavior in a finite-dimensional phase space is described by a nonlinear dif-
ferential equation, The results obtained complement the investigations in

[1-101.
1, Definitions and formulations of results, Let 2" be an n-dimen-
sional arithmetic space of points = col (zy, ..., z,) with norm | - |. We examine
the system

=A%)z + B(tu+ @t z,u),z= R, ue= R™, t i, o) (1.1)
Here thereal (n X n )and ( » X m ) matrices 4 () and B (¢) are continuous for
t = [¢,, o0); the real function @ (£, z, u) is continuous in the collection of argu-
ments (¢, x, u) & (¢, ) X R"X R™. We say that the control U, (f), t = I =
[#y, t;] transiates the position (%4, Z,) of system (1,1) into the position (#;, 0) if the
solution z, (%) , satisfying the initial condition x (f,) = Z, of system (1.1) under con-
trol u = u, () is defined for all ¢ & I, is unique on J ,and passes through the point
zy = 0 atinstant £ @z, () = 0.



