ON A CLASS OF LINEAR DIFFERENTIAL GAMES WITH IMPULSE CONTROLS

PMM Vol. 38, № 4, 1974, pp. 590-598 V. I. UKHOBOTOV (Moscow) (Received March 12, 1973)

We examine a class of linear differential games in which the first player can exert impulse controls while the second player has at his disposal controls with geometric constraints. We formulate a game problem and we prove a theorem which answers the problem posed in the class of games being considered. We present examples. The paper's contents abut those in [1-5].

1. Let the equations of motion have the following form:

$$d\mathbf{z} = B\mathbf{z} dt + \mathbf{v} dt + N d\Phi, \quad \mathbf{z} \in \mathbb{R}^n, \quad \mathbf{v} \in V \subset \mathbb{R}^n$$
 (1.1)

Here R^n is an n-dimensional Euclidean space, B is a constant square matrix of dimension n, N is a constant matrix having n rows and r columns, V is a convex compactum.

Let t>0 and C[0,t] be a Banach space of continuous r-dimensional vector-valued functions $\mathbf{x}(\tau)$, defined on [0,t], with norm $\kappa([0,t],\mathbf{x}(\tau)) = \max_{0 \leqslant \tau \leqslant t} \times \|\mathbf{x}(\tau)\|$, where $\|\mathbf{x}(\tau)\|$ is the norm in an r-dimensional linear normed space R^r . By W[0,t] we denote the space of r-dimensional vector-valued functions $\Phi(\tau)$ of bounded variation on [0,t]; the norm in W[0,t], denoted by $\rho([0,t],\Phi(\tau))$, is generated by the norm $\kappa([0,t],\mathbf{x}(\tau))$ as in the space adjoint to C[0,t].

Let there be given $\mathbf{z}_0 \in R^n$, $\sigma > 0$, $\Phi (\tau) \in W [0, \sigma]$ and the vector-valued function $\mathbf{v}(\tau) \in V$ measurable on $[0, \sigma]$. We assume that under the action of functions $\Phi(\tau)$, $\mathbf{v}(\tau)$ the phase point \mathbf{z} of system (1.1) displaces from the initial position to the point

$$\mathbf{z}(\sigma) = e^{\sigma B} \mathbf{z}_0 + \int_0^{\sigma} e^{(\sigma - \tau)B} \mathbf{v}(\tau) d\tau + \int_0^{\sigma} e^{(\sigma - \tau)B} N d\Phi(\tau)$$
 (1.2)

at instant σ , where the last integral is understood in the Riemann-Stieltjes sense. We introduce the variable μ , varying by the following rule:

$$\mu(\sigma) = \mu_0 - \rho([0, \sigma], \Phi(\tau)) \tag{1.3}$$

We write the constraints on the choice of function $\Phi\left(\tau\right)$ in the form of inequalities

$$\mu (\sigma) \geqslant 0 \tag{1.4}$$

By I we denote the set $\mu\geqslant 0$ and the direct product of R^n and I by $R^n\times I$. In the game problem to be examined below we use the following rule. The first player chooses a function $\Phi(\tau)$, the second player the function $\Phi(\tau)$ be the initial position of the game. According to his own judgement the second player selects $\sigma_1>0$ and the control $\Psi(\tau)$ we will be measurable on $[0,\sigma_1]$. He communicates his own choice to the first player. Knowing the second player's choice, the first player chooses the control $\Phi(\tau)$ where $\Phi(\tau)$ is one in $\Phi(\tau)$ so as to fulfil (1.4). Under the action of the controls chosen the point $\Phi(\tau)$ is player to the point

 $[\mathbf{z}(\sigma_1); \mu(\sigma_1)] \in \mathbb{R}^n \times \mathbf{I}$ (see (1.2) and (1.3)). Next, the second player selects $\sigma_2 > 0$ and the control $v_2(\tau)$ on $[0, \sigma_2]$ and informs the first player, etc. These are the so-called σ-strategies.

Let π be the linear mapping of R^n into R^q , where R^q is a q-dimensional linear Euclidean space. For each t>0 we consider the set

$$A(t) = \left\{ \mathbf{y} \in \mathbb{R}^{q} : \mathbf{y} = \int_{0}^{t} \pi e^{(t-\tau)B} N d\Phi(\tau), \, \rho([0, t] \Phi(\tau)) = 1 \right\}$$
 (1.5)

Using the weak compactness of a ball in W[0, t], we can show that for each t > 0the set A(t) is a convex compactum in R^{q} given by the system of inequalities (the asterisk denotes transposition) $(\mathbf{y}, \psi) \leqslant \max_{0 < \tau < t} \| N^* e^{\tau B^*} \pi^* \psi \|$ (1.6)

We set $A(0) = \bigcap_{t>0} A(t)$. Let a closed set G be given in \mathbb{R}^q .

Definition 1. A game starting from a point $[\mathbf{z};\,\mu] \in \mathbb{R}^n imes I$ can be completed at an instant $t_1 > 0$ if for any σ -strategy of the second player there exists a σ -strategy of the first player such that $\pi z(t_1) \subseteq G + \mu(t_1)A_1(0)$.

The following problem can be formulated in relation with the definition given. Problem 1. Given $G \subset R^q$ and $t_1 > 0$; determine the set of those points [z] μ] $\in \mathbb{R}^n \times I$ from which the game can be completed at the instant t_1 .

- 2. We shall solve Problem 1 under the following assumptions:
 - $\pi e^{\tau B}V = \mathbf{v}(\tau) + k(\tau)S, \quad \tau \geqslant 0$

 - 2) $\|N^*e^{\tau B^*}\pi^*\psi\| = \beta(\tau) c(\psi), \quad \tau \geqslant 0, \ \psi \in \mathbb{R}^q$ 3) $m(t) = \max_{0 \leqslant \tau \leqslant t} \beta(\tau) > 0, \quad t > 0$
 - $G = \mathbf{a} + \varepsilon S$, $\mathbf{a} \subset \mathbb{R}^q$, $\mathbf{a} = \text{const}$

Here S is some compactum in \mathbb{R}^q , convex and symmetric with respect to the origin, containing the zero vector as an interior point, $c(\psi)$ is the support function of S

$$c(\psi) = \max_{s \in S} (s, \psi)$$
 for $\psi \in R^q$

 $k(\tau)$ and $\beta(\tau)$ are continuous scalar functions, $k(\tilde{\tau}) \gg 0$, $\beta(\tau) \gg 0$ for $\tau \gg 0$, y (τ) is a continuous q-dimensional vector-valued function.

From assumptions (1) and (2) and from (1.5), (1.6) we can get that

$$\left\{\mathbf{w} \in \mathbb{R}^{q} \colon \mathbf{w} = \int_{\tau_{1}}^{\tau_{1}+\tau_{2}} \pi e^{\tau B} \mathbf{v}(\tau) d\tau, \, \mathbf{v}(\tau) \in V\right\} =$$

$$\int_{\tau_{1}}^{\tau_{1}+\tau_{2}} \mathbf{y}(\tau) d\tau + \int_{\tau_{1}}^{\tau_{1}+\tau_{2}} k(\tau) d\tau \cdot S$$

$$(2.1)$$

$$\pi e^{\tau_1 B} A(\tau_2) = \max_{\tau_1 \leq \tau \leq \tau_1 + \tau_2} \beta(\tau) \cdot S \tag{2.2}$$

for any $\tau_1 \geqslant 0$, $\tau_2 \geqslant 0$.

By t_2 we denote the largest of the numbers $t \geqslant 0$ for which

$$\varepsilon - \int_{0}^{t} k(\tau) d\tau \geqslant 0$$

If this inequality is fulfilled for all $t \geqslant 0$, we set $t_2 = + \infty$.

Lemma 1. Let $0\leqslant t_1\leqslant t_2$; in order that the game can be completed at the instant t_1 from the point $[\mathbf{z};\ \mu]\in R^n\times I$, it is necessary and sufficient that

$$\pi e^{t_1 B} \mathbf{z} + \int_0^{t_1} \mathbf{y}(\tau) d\tau - \mathbf{a} = (\mu m(t_1) + \varepsilon - K_1) S, \quad K_1 = \int_0^{t_1} \mathbf{k}(\tau) d\tau \quad (2.3)$$

Proof. Using the definition of the operation ! (see [1]), for example), we can show that

$$(\mu m (t_1) + \varepsilon - K_1) S = (\mu m (t_1) + \varepsilon) S \stackrel{\bullet}{=} K_1 S$$

$$(\mu m (t_1) + \varepsilon - K_1) S = \mu m (t_1) S + (\varepsilon S \stackrel{\bullet}{=} K_1 S)$$

$$(2.4)$$

$$(\mu m (t_1) + \varepsilon - K_1) S = \mu m (t_1) S + (\varepsilon S = K_1 S)$$
(2.5)

Necessity. Suppose that (2.3) is not fulfilled; then from (2.1) and (2.4) follows the existence of the control $\mathbf{v}_1(\tau) \subset V$ measurable on $[0, t_1]$, such that

$$\pi e^{t_1 B} \mathbf{z} + \int_0^{t_1} \pi e^{(t_1 - \tau)B} \mathbf{v}_1(\tau) d\tau - \mathbf{a} \stackrel{\text{def}}{=} (\mu m(t_1) + \varepsilon) S$$
 (2.6)

Suppose the first player chose the control $\Phi_1(\tau) \in W[0, t_1]$ satisfying (1.4). Then there exists $\lambda \in [0, 1]$ such that

$$\lambda \mu = \rho ([0, t_1], \Phi_1(\tau)), \qquad \mu (t_1) = (1 - \lambda) \mu$$

From this and from relations (1.5) and (2.2) follows the existence of a vector $s_1 \in S$ such that

$$\int_{0}^{t_{1}} \pi e^{(t_{1}-\tau)B} Nd\Phi(\tau) = \lambda \mu m(t_{1}) s_{1}$$

Then from (2.6) it follows that

$$\pi_{\mathbf{Z}}(t_{1}) = \pi e^{t_{1}B}\mathbf{Z} + \int_{0}^{t_{1}} \pi e^{(t_{1}-\tau)B} \mathbf{v}_{1}(\tau) d\tau + \lambda \mu m(t_{1}) s_{1} \in \mathbf{a} + (1-\lambda) \mu A(0) + \varepsilon S$$

because for any $\lambda \in [0, 1]$ and $s \in S$ we have

$$\mathbf{a} - \lambda \mu m (t_1) s + (1 - \lambda) \mu A_1 (0) + \varepsilon S \subset \mathbf{a} + (\mu m (t_1) + \varepsilon) S$$

Sufficiency. Suppose (2.3) holds; then from (2.5) follows the existence of $s_1 \in$ S such that

$$\pi e^{t_1 B} \mathbf{z} + \int_0^{t_1} \pi e^{(t_1 - \tau)B} \mathbf{v}(\tau) d\tau + \mu m(t_1) s_1 \in \mathbf{a} + \varepsilon S$$
 (2.7)

for all functions $\mathbf{v}(\tau) \in V$ measurable on $[0, t_1]$. The proof of the sufficiency follows from (2.7) if we make use of (1.5) and (2.2).

Let us now consider the case $t_1 > t_2$.

Theorem 1. In order that the game from the point $[z;\mu] \in \mathbb{R}^n imes I$ can be completed at an instant $t_1 > t_2$, it is necessary and sufficient that

$$\pi e^{t_1 B} \mathbf{z} + \int_0^{t_1} \mathbf{y}(\tau) d\tau - \mathbf{a} + m(t_1) \int_{t_1}^{t_1} \frac{k(\tau)}{m(\tau)} d\tau \cdot S \subset \mu m(t_1) S \qquad (2.8)$$

Proof. Necessity. For each integer $j \geqslant 1$ we define

$$b(j) = \sum_{i=1}^{j} \left[\left(\int_{t_2+(i-1)\sigma}^{t_2+i\sigma} k(\tau) d\tau \right) / m(t_2+i\sigma) \right], \quad \sigma = \frac{t_1-t_2}{j}$$

As is easy to see

$$\lim_{j\to\infty}b(j) = \int_{t_2}^{t_1} \frac{k(\tau)}{m(\tau)} d\tau$$

Suppose that (2,8) is not fulfilled; then a number j_1 exists such that

$$\pi e^{t_1 B} \mathbf{z} + \int_0^{t_1} \mathbf{y}(\tau) d\tau - \mathbf{a} + m(t_1) b(j_1) S \equiv \mu m(t_1) S$$

$$\eta_i = \left(\int_0^{t_2 + i\sigma_1} k(\tau) d\tau \right) \left| m(t_2 + i\sigma_1), \quad \sigma_1 = \frac{t_1 - t_2}{j_1} \right|$$
(2.9)

We set

Then we can write $b(j_1) = \eta_1 + \eta_2 + ... + \eta_{j_1}$.

From (2.9) and the convexity of compactum S follows the existence of a nonzero vector $\psi_1 \in \mathbb{R}^q$ and a number v > 0 such that

$$\left(\pi e^{t_1 B} \mathbf{z} + \int_{0}^{t_1} \mathbf{y}(\tau) d\tau - \mathbf{a}, \, \psi\right) + m(t_1) \, b(j_1) \, c(\psi_1) \geqslant \mu m(t_1) \, c(\psi_1) + \mathbf{v} \quad (2.10)$$

Let the vector $s_1 \subseteq S$ be such that $c(\psi_1) = (s_1, \psi_1)$. From (2.1) follows the existence of a function $v_1(\tau)$ measurable on $[0, \sigma_1]$, such that

$$\pi e^{(t_1-\sigma_1)B} \int_0^{\sigma_1} e^{(\sigma_1-\tau)B} \mathbf{v}_1(\tau) d\tau = \int_{t_1-\sigma_1}^{t_1} \mathbf{y}(\tau) d\tau + \int_{t_1-\sigma_2}^{t_1} k(\tau) d\tau \cdot s_1 \qquad (2.11)$$

Let us show that if the second player takes σ_1 and \mathbf{v}_1 (τ) $\rightleftharpoons V$ on $[0, \sigma_1]$, then for any control $t_{\mathbf{i}-\sigma_1}$ (2.12) $\pi e^{(t_1-\sigma_1)B}\mathbf{z}(\sigma_1) + \int\limits_0^\tau \mathbf{y}(\tau)\,d\tau - \mathbf{a} + m\,(t_1-\sigma_1)\,(b\,(j_1)-\eta_{j_1})\,S \rightleftharpoons \mu\,(\sigma_1)\,m\,(t_1-\sigma_1)\,S$

By virtue of (1.4) and (2.2) we can assume that there exist $s \in S$ and $\lambda \in [0, 1]$ such that

$$\mu(\sigma_1) = (1 - \lambda)\mu \tag{2.13}$$

$$\pi_{e^{(t_{1}-\sigma_{1})B}} \int_{0}^{\sigma_{1}} e^{(\sigma_{1}-\tau)B} N \, d\Phi \left(\tau\right) = \lambda \mu \, \max_{t_{1}-\sigma_{1} \leqslant \tau \leqslant t_{1}} \beta \left(\tau\right) \cdot s \tag{2.14}$$

Then, from (2.11) and (2.14) follows

$$\pi e^{(t_1 - \sigma_1)B} \mathbf{z} (\sigma_1) + \int_0^{t_1 - \sigma_1} \mathbf{y} (\tau) d\tau = \pi e^{t_1 B} \mathbf{z} + \int_0^{t_1} \mathbf{y} (\tau) d\tau + \int_0^{t_1} k(\tau) d\tau \cdot s_1 + \lambda \mu \max_{t_1 - \sigma_1 \leqslant \tau \leqslant t_1} \beta(\tau) \cdot s$$

$$(2.15)$$

Let $\mu \leqslant b(j_1) - \eta_{j_1}$; then (2.12) always holds since

$$\mu (\sigma_1) = (1 - \lambda)\mu \leqslant b (j_1) - \eta_{j_1}$$

We now examine the case when $\mu \geqslant b(j_1) - \eta_{j_1}$. If $\lambda \in [0, 1]$ is such that $\mu(\sigma_1) < b(j_1) - \eta_{j_1}$, then (2.12) holds. Let us consider $\lambda \in [0, 1]$ such that

$$\mu (\sigma_{\mathbf{1}}) \geqslant b (j_{\mathbf{1}}) - \eta_{j_{\mathbf{1}}}, i.e.$$

$$0 \leqslant \lambda \mu \leqslant \mu - (b (j_{\mathbf{1}}) - \eta_{j_{\mathbf{1}}})$$

$$(2.16)$$

from (2.15) and (2.10) it follows that

$$(\pi e^{(t_{1}-\sigma_{1})B}\mathbf{z}(\sigma_{1}), \, \psi_{1}) + \left(\int_{0}^{t_{1}-\sigma_{1}}\mathbf{y}(\tau) \, d\tau - \mathbf{a}, \, \psi_{1}\right) + \\ m(t_{1}-\sigma_{1})(b(j_{1})-\eta_{j_{1}})c(\psi_{1}) - \\ \mu(\sigma_{1})m(t_{1}-\sigma_{1})c(\psi_{1}) \geqslant \mu(t_{1})m(t_{1})c(\psi_{1}) - m(t_{1})b(j_{1})c(\psi_{1}) + \\ \int_{t_{1}-\sigma_{1}}^{t_{1}}k(\tau) \, d\tau c(\psi_{1}) - \lambda \mu \max_{t_{1}-\sigma_{1} \leqslant \tau \leqslant t_{1}}\beta(\tau)c(\psi_{1}) + \\ m(t_{1}-\sigma_{1})(b(j_{1})-\eta_{j_{1}})c(\psi_{1}) - \\ (1-\lambda)\mu m(t_{1}-\sigma_{1})c(\psi_{1}) + \nu = g(\lambda)$$

We can show that the inequality $g(\lambda) \geqslant v$ is fulfilled for $\lambda \in [0, 1]$ and satisfying (2.16); this signifies that (2.12) holds.

Repeating this argument j_1 times we find the second player's σ -strategy such that

$$\pi e^{t_2 B} \mathbf{z} (t_1 - t_2) + \int_0^{t_2} \mathbf{y}(\tau) d\tau - \mathbf{a} \succeq \mu (t_1 - t_2) m(t_2) S$$

is fulfilled at the instant $t_1 - t_2$ for any σ -strategy of the first player; here $\sigma_i = \sigma_1$. The application of Lemma 1 completes the proof of necessity.

Sufficiency. Suppose (2.8) holds; then

$$\mu \geqslant \int_{t_0}^{t_1} \frac{k(\tau)}{m(\tau)} d\tau \tag{2.17}$$

must necessarily be fulfilled. Since $m\left(t_{1}\right)\gg m\left(au\right)$ for $0\leqslant au\leqslant t_{1},$

$$\int_{t_{1}-\sigma}^{t_{1}}k\left(\tau\right)d\tau+m\left(t_{1}\right)\int_{t_{2}}^{t_{1}-\sigma}\frac{k\left(\tau\right)}{m\left(\tau\right)}d\tau\leqslant m\left(t_{1}\right)\int_{t_{2}}^{t_{1}}\frac{k\left(\tau\right)}{m\left(\tau\right)}d\tau\tag{2.18}$$

for any $\sigma \in [t_2, t_1]$. From (2.8), (2.17) and (2.18) follows

$$\pi e^{t_1 B} \mathbf{z} + \int_{t_1}^{t_1} \mathbf{y}(\tau) d\tau - \mathbf{a} + \int_{t_2}^{t_1} k(\tau) d\tau \times \times S \subset \left(\mu m(t_1) - m(t_1) \int_{t_2}^{t_1 - \sigma} \frac{k(\tau)}{m(\tau)} d\tau \right) S$$
(2.19)

Suppose that the second player had selected $0<\sigma_1\leqslant t_1-t_2$ and the control $\mathbf{v_1}\left(\mathbf{t}\right) \Subset V$ on $[0,\ \sigma_1]$; then there exists $s_1 \Subset S$ such that (2.11) holds.

Let us first consider the case $m(t_1 - \sigma_1) < m(t_1)$. Then, according to (2.19), there exists $s_2 \in S$ such that

$$\pi e^{t_1 B} \mathbf{z} + \int_{t_2}^{t_1} \mathbf{y}(\tau) d\tau - \mathbf{a} + \int_{t_1 - \sigma_1}^{t_1} k(\tau) d\tau s_1 + m(t_1) \left(\mu - \int_{t_2}^{t_1 - \sigma_1} \frac{k(\tau)}{m(\tau)} d\tau \right) s_2 = 0$$

where $\theta \in R^q$ is the zero vector. For $s_2 \in S$ we can find a function $\Phi(\tau) \in W[0, \sigma_1], \rho([0, \sigma_1], \Phi(\tau)) = 1$ such that

$$\pi e^{(t_1-\sigma_1)B} \int_{0}^{\sigma_1} e^{(\sigma_1-\tau)B} N \, d\Phi\left(\tau\right) = \max_{t_1-\sigma_1 \leqslant \tau \leqslant t_1} \beta\left(\tau\right) \cdot s_2 = m\left(t_1\right) s_2 \qquad (2.21)$$

To the first player we assign the control

$$\Phi_{1}(\tau) = \left(\mu - \int_{t_{0}}^{t_{1} - \sigma_{1}} \frac{k(\tau)}{m(\tau)} d\tau\right) \Phi(\tau)$$

Then, by virtue of (2.20) and (2.21)

$$\pi e^{(t_1-\sigma_1)B}\mathbf{z}$$
 (σ_1) + $\int_{0}^{t_1-\sigma_1}\mathbf{y}$ (τ) $d\tau$ — $\mathbf{a} = \mathbf{0}$

In addition

$$\mu(\sigma_1) = \int_{t_1}^{t_1-\sigma_1} \frac{k(\tau)}{m(\tau)} d\tau$$

Consequently,

$$\pi e^{(t_1-\sigma_1)B} \mathbf{z} \left(\sigma_1\right) + \int_{0}^{t_1-\sigma_1} \mathbf{y}\left(\tau\right) d\tau - \mathbf{a} + m\left(t_1-\sigma_1\right) \int_{t_1}^{t_1-\sigma_1} \frac{k\left(\tau\right)}{m\left(\tau\right)} d\tau \cdot S \subset \mu\left(\sigma_1\right) m\left(t_1-\sigma_1\right) S$$

Now let $m(t_1 - \sigma_1) = m(t_1)$; then we assign $\Phi_1(\tau) \equiv 0$ to the first player. Since strict equality obtains in (2.18) when $m(t_1 - \sigma_1) = m(t_1)$, the left hand side of inclusion (2.22) equals

$$\pi e^{t_1 B} \mathbf{z} + \int_{0}^{t_1} \mathbf{y}(\tau) d\tau - \mathbf{a} + \int_{t_1 - \tau_1}^{t_1} k(\tau) d\tau \cdot s_1 + m(t_1) \int_{t_1}^{t_1 - \sigma_1} \frac{k(\tau)}{m(\tau)} d\tau \cdot S$$

Thus we have shown that the first player can always maintain the inclusion (2.22). Consequently the inclusion

Consequently, the inclusion
$$\pi e^{t_{2}B}\mathbf{z}\left(t_{1}-t_{2}\right)+\int\limits_{0}^{t_{2}}\mathbf{y}\left(\mathbf{\tau}\right)d\mathbf{\tau}-\mathbf{a} \in \mu\left(t_{1}-t_{2}\right)m\left(t_{2}\right)S$$

is fulfilled at the instant t_1-t_2 . The proof is completed by an application of Lemma 1. We consider now the case $\varepsilon=0$.

Theorem 2. (1) Let $\lim_{t \to \infty} \frac{t_1}{m(\tau)} d\tau < \infty$

$$\lim_{\delta \to 0} \int_{\delta}^{t_1} \frac{k(\tau)}{m(\tau)} d\tau < +\infty$$

In order that the game from the point $[z; \mu] \subseteq \mathbb{R}^n \times I$ can be completed at an instant t_1 , it is necessary and sufficient that

$$\pi e^{t_1 B} \mathbf{z} + \int_0^{t_1} \mathbf{y}(\tau) d\tau - \mathbf{a} + m(t_1) \int_0^{t_1} \frac{k(\tau)}{m(\tau)} d\tau \cdot S \subset \mu m(t_1) S$$
2) Let
$$\lim_{\delta \to 0} \int_0^{t_1} \frac{k(\tau)}{m(\tau)} d\tau = +\infty$$

Then it is impossible to complete the game at an instant $t_1>0$ from any point $[z;\mu] \in R^n \times I$.

The proof of this theorem is analogous to that of Theorem 1.

3. We present several examples illustrating Theorems 1 and 2.

Example 1. Let the equations of motion be of form (1.1). We assume V to be a convex compactum in R^n , symmetric with respect to the origin. Let $R^q = R^1$ and let set G be the segment $[\varepsilon_1, \varepsilon_2]$. For q = 1 the matrix π is an n-dimensional row-vector. We denote the segment [-1, 1] by S; then $G = a + \varepsilon S$, where $a = (\varepsilon_1 + \varepsilon_2)/2$, $\varepsilon = (\varepsilon_2 - \varepsilon_1)/2$. It is not difficult to verify that the assumptions (1), (2), (4), stated in Sect. 2, are fulfilled, and

$$\beta\left(\tau\right) = \|N^{\bullet}e^{\tau B^{\bullet}}\pi^{\bullet}\|, \quad \mathbf{y}\left(\tau\right) = 0, \quad k\left(\tau\right) = \max_{\mathbf{v} \in V} \left(e^{\tau B^{\bullet}} \pi^{\bullet}, \mathbf{v}\right)$$

For the fulfillment of assumption (3) we require $\beta(\tau) > 0$ for $0 < \tau \leqslant \sigma$, where σ is some number.

Example 2. Consider a game in which the equations of motion are

$$dz_1 = z_2 dt + v dt$$
, $dz_2 = k_1 z_1 dt + k_2 z_2 dt + d\Phi$

where z_1 , z_2 are r-dimensional vectors, k_1 and k_2 are some numbers. It is easy to see that

 $N = \left\| \frac{\Theta}{E} \right\|$

where E and Θ are the r-dimensional unit and zero matrices, respectively. In R^r we define the set

 $S = \{ \mathbf{w} \in R^r : (\mathbf{w}, \, \psi) \leqslant \| \psi \| \text{ for } \psi \in R^r \}$

We assume that $v \in \delta S$, where $\delta > 0$. We set q = r and $\pi = (E, 0)$; then $\pi z \in \varepsilon S$ signifies that $z_1 \in \varepsilon S$. Assumptions (1) – (4) are fulfilled in this example, and

$$\pi e^{\tau B} V = \delta \mid \alpha (\tau) \mid S, \qquad || N^* e^{\tau B^*} \pi^* \psi || = | \gamma (\tau) | || \psi ||$$

Here α (τ) and γ (τ) are the solutions of the following equations:

$$\alpha^{\bullet \cdot} = k_1 \alpha + k_2 \alpha^{\cdot}, \quad \alpha(0) = 1, \quad \alpha^{\cdot}(0) = 0$$

 $\gamma^{\cdot \cdot} = k_1 \gamma + k_2 \gamma^{\cdot}, \quad \gamma(0) = 0, \quad \gamma^{\cdot}(0) = 1$

Example 3. Let the equations of motion have the form

$$d\mathbf{z}_1 = \mathbf{z}_2 dt, \quad d\mathbf{z}_2 = -k_1 \mathbf{z}_2 dt + B_1 \mathbf{z}_2 dt + d\Phi$$

 $d\mathbf{y}_1 = \mathbf{y}_2 dt, \quad d\mathbf{y}_2 = -k_2 \mathbf{y}_2 dt + B_2 \mathbf{y}_2 dt + \mathbf{v} dt$

Here z_1 , z_2 , y_1 , y_2 are r-dimensional vectors, k_1 , k_2 are some numbers, B_1 and B_2 are constant ($r \times r$)-matrices satisfying the conditions

$$B_i^* = -B_i$$
, $B_i^2 = -\omega_i^2 E$, $i = 1, 2$

where ω_i are certain nonnegative numbers, E is the r-dimensional unit matrix. We assume that $\mathbf{v} \in \delta S$, where S is the r-dimensional closed Euclidean sphere of unit radius, $\delta > 0$. We take the Euclidean norm as the norm in R^r ; then (see [6], for example)

 $\rho\left(\left[0,t\right],\Phi\left(\tau\right)\right) = \int_{0}^{t} \left(\sum_{i=1}^{r} d\Phi_{i}^{2}\left(\tau\right)\right)^{1/2}$

We set q = r and $\pi = (E, 0, -E, 0)$; then $\pi z \in \varepsilon S$ signifies that $z_1 - y_1 \in \varepsilon S$. We can verify that

$$\pi e^{\tau B} V = \delta \alpha (\tau) S, \qquad \| N^* e^{\tau B^*} \pi^* \psi \| = \beta (\tau) \| \psi \|$$

where

$$\alpha (\tau) = (f_2^2 (\tau) + g_2^2 (\tau))^{1/2}, \quad \beta (\tau) = (f_1^2 (\tau) + g_1^2 (\tau))^{1/2}$$

$$f_i (\tau) = \int_0^{\tau} e^{-k_i t} \cos \omega_i t \, dt, \quad g_i (\tau) = \int_0^{\tau} e^{-k_i t} \sin \omega_i t \, dt, \quad t = 1, 2$$

REFERENCES

- Pontriagin, L.S., On linear differential games, 2. Dokl. Akad. Nauk SSSR, Vol. 195, № 4, 1967.
- Krasovskii, N. N. and Tret'iakov, V. E., On the pursuit problem under constraints on the control impulses. Differentsial nye Uravneniia, Vol. 2, № 5, 1966.
- 3. Krasovskii, N. N., Games-theoretical encounter of motions with bounded impulses. PMM Vol. 32, Nº 2, 1968.
- 4. Pozharitskii, G.K., On a problem of the impulse contact of motions. PMM Vol. 35, N^2 5, 1971.
- 5. Pozharitskii, G.K., Game problem of "soft" impulse contact of two material points. PMM Vol. 36, № 2, 1972.
- 6. Krasovskii, N. N., Theory of Control of Motion. Moscow, "Nauka", 1968.

Translated by N.H.C.

UDC 62-50

CONTROLLABILITY OF A NONLINEAR SYSTEM IN A LINEAR APPROXIMATION

PMM Vol. 38, № 4, 1974, pp. 599-606 E. L. TONKOV (Tambov) (Received November 2, 1973)

We study the conditions for the controllability of a dynamic system whose behavior in a finite-dimensional phase space is described by a nonlinear differential equation. The results obtained complement the investigations in [1-10].

1. Definitions and formulations of results. Let R^n be an *n*-dimensional arithmetic space of points $x=\operatorname{col}(x_1,\ldots,x_n)$ with norm $|\cdot|$. We examine the system

 $\dot{x}=A\ (t)x+B\ (t)u+\phi\ (t,\,x,\,u),\,x\in R^n,\,u\in R^m,\,t\in [t_0,\,\infty)$ Here the real $(n\times n)$ and $(n\times m)$ matrices $A\ (t)$ and $B\ (t)$ are continuous for $t\in [t_0,\,\infty)$; the real function $\phi\ (t,\,x,\,u)$ is continuous in the collection of arguments $(t,\,x,\,u)\in [t_0,\,\infty)\times R^n\times R^m$. We say that the control $u_0\ (t),\,t\in I=[t_0,\,t_1]$ translates the position $(t_0,\,x_0)$ of system (1.1) into the position $(t_1,\,0)$ if the solution $x_0\ (t)$, satisfying the initial condition $x\ (t_0)=x_0$ of system (1.1) under control $u=u_0\ (t)$ is defined for all $t\in I$, is unique on I, and passes through the point $x_1=0$ at instant $x_1:x_0\ (t_1)=0$.